Skip to Content
Biotechnology and health

A man with Parkinson’s regained the ability to walk thanks to a spinal implant

The implant delivers bursts of electrical signals, stimulating his spinal cord to make his leg muscles move.

November 6, 2023
Courtesy of CHUV

A man with Parkinson’s disease has regained the ability to walk after physicians implanted a small device into his spinal cord that sends signals to his legs. 

“I can now walk with much more confidence and my daily life has profoundly improved,” said the patient, a 62-year-old named Marc, during a press conference. 

Marc is the first and only person to have received the new spinal neuroprosthesis, a small device containing electrodes placed under the skin on top of his spinal cord. It works by sending bursts of electrical signals to stimulate the nerves in his spinal cord, which then activate his leg muscles. The implant is described in a new study published today in Nature Medicine.

Marc has had Parkinson’s for about three decades. Twenty years ago, he received an implant that delivered deep brain stimulation—a common treatment for this disease. Despite that, he gradually developed neurological problems that left him unable to get around. “I was forced to stop walking for three years and I was considered handicapped,” Marc said. 

Then, in 2021, he enrolled in a clinical trial run by researchers at the Swiss Federal Institute of Technology in Zurich and Lausanne University Hospital to test whether a neuroprosthetic device they had developed could restore his walking ability. 

The team had already tested the device on three monkeys with walking and balancing difficulties similar to those experienced by people with Parkinson’s. They implanted the devices into the monkeys’ spinal cords and also gave each monkey a brain-computer interface that allowed researchers to tell when the monkey wanted to walk. Then the researchers delivered short bursts of electrical signals through the spinal implant, ultimately restoring walking abilities in all three monkeys.

In Marc’s case, the team implanted electrodes on the top of his spinal cord and linked them to a neurostimulator placed under the skin in his abdomen. Whenever he wants to take a walk, he pushes a button on a remote control that sends wireless signals to the neurostimulator. 

The neuroprosthetic device then sends bursts of electrical signals that stimulate the lumbosacral spinal cord, a region of the lower spine that activates leg muscles. 

“These areas have all the motor neurons that control muscle contraction, which in turn controls movement of the legs,” says Eduardo Moraud, a neural engineer at Lausanne University Hospital who was part of the team that built the device. 

Parkinson’s robs people of their quality of life: as the disease progresses, most people have trouble walking or balancing and may experience “freezing,” a temporary inability to move. For more than 20 years, people with Parkinson’s-related mobility issues have been treated using deep brain stimulation. But many people like Marc find that their symptoms persist, says Jocelyne Bloch, a coauthor of the study and a neuroscientist at the Lausanne University Hospital. So she and her team have been on the hunt for new therapies. They previously worked on one that restored walking in a person who was paralyzed as a result of spinal cord injury. 

“[The new study] is another technical tour de force by this group,” says Sergey Stavisky, a neural engineer at the University of California, Davis. Stavisky, who was not involved in the study, says he is glad to see the technology working for spinal cord stimulation: “It’s significant and very exciting.”     

However, it remains unclear whether the neuroprosthetic device will work in every person with Parkinson’s. “That’s a really important question to answer,” says Stavisky. Marc has had his implant for about two years. Next, the Swiss research team plans to test the device in six more people.         

Deep Dive

Biotechnology and health

FDA advisors just said no to the use of MDMA as a therapy

The studies demonstrating MDMA’s efficacy against PTSD left experts with too many questions to greenlight the treatment.

Biotech companies are trying to make milk without cows

The bird flu crisis on dairy farms could boost interest in milk protein manufactured in microorganisms and plants. 

Is this the end of animal testing?

Researchers are increasingly turning to organ-on-a-chip technology for drug testing and other applications.

What’s next for MDMA

The FDA is poised to approve the notorious party drug as a therapy. Here’s what it means, and where similar drugs stand in the US. 

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.